Оглавление
Здание высоких технологий
Теплозащита и естественное освещение
Система климатизации

Система климатизации

    В здании мэрии, как и во многих других зданиях, созданных Норманом Фостером, инженерные решения неотделимы от архитектурного облика самого здания и направлены на снижение энергопотребления, экологичность и повышение качества микроклимата в помещениях. Это позволяет создателям здания говорить об «интегрированной» энергосберегающей системе климатизации.

    В здании используется комбинация систем естественной и механической вентиляции. Офисные помещения, расположенные по периметру здания, могут проветриваться естественным образом через щелевые вентиляционные отверстия, расположенные под окнами. Естественному проветриванию способствует открытая планировка с большими внутренними объемами помещений. При открывании вентиляционных отверстий в данном помещении системы отопления и механической вентиляции могут отключаться автоматически, что позволяет минимизировать потери энергии.

Рисунок.

 

 

    Схема естественной вентиляции помещений:

1 – приток воздуха через щелевое отверстие в нижней части окна;

2 – удаление воздуха через щелевое отверстие в верхней части помещения;

3 – солнцезащитные устройства

(шторы-жалюзи)

    В здании мэрии использована концепция «двойного вентилируемого фасада», примененная, например, в другом здании, спроектированном Норманом Фостером, – здании «Commerzbank» во Франкфурте-на-Майне (см. «АВОК», 2002, № 3). Внутренняя оболочка двойного фасада представляет собой стеклопакет, заполненный инертным газом. Наружная оболочка (первый слой) выполняет роль ветрозащитного экрана и снижает конвективный тепловой поток между поверхностью окна и наружным воздухом. Между этими двумя слоями расположен воздушный промежуток, а также солнцезащитные устройства в виде штор-жалюзи. Внешний слой остекления имеет отверстия в нижней части (ниже вентиляционных щелевых отверстий). При естественном проветривании наружный воздух, прежде чем попасть в здание, проникает в промежуток между слоями, где нагревается под воздействием солнечной радиации. Затем приточный воздух попадает в помещение через щелевое отверстие, расположенное в нижней части окна. Эти щелевые отверстия открываются вручную людьми, находящимися в данном помещении. Удаление воздуха происходит через щелевое отверстие в верхней части помещения. На наружном слое и в воздушном промежутке также происходит первоначальное ослабление солнечной радиации. Дальнейшее резкое уменьшение солнечной радиации происходит посредством солнцезащитных устройств.

    Широкое использование двойных фасадов началось в 1990-х годах, особенно часто такие конструкции применяются при строительстве высотных зданий. Следует отметить, что в настоящее время у специалистов к таким фасадам сложилось неоднозначное отношение. Наряду с достоинствами, концепция «двойного фасада» имеет и ряд недостатков, в частности, высокие капитальные и эксплуатационные затраты, связанные с трудностью очистки внутренних поверхностей. Нет единого мнения среди специалистов о влиянии двойных фасадов на теплопотери зданий. В этом номере журнала публикуется статья Карла Гертиса (Karl Gertis), директора Института строительной физики им. Фраунгофера (Германия) «Имеют ли смысл, с точки зрения строительной физики, новые разработки фасадов?», посвященная этим проблемам. Опыт эксплуатации зданий с двойными вентилируемыми фасадами и накопление результатов практических измерений энергопотребления таких зданий поможет выработать единое мнение о целесообразности применения этих конструкций.

    При неблагоприятных погодных условиях (в очень жаркую или холодную погоду) щелевые вентиляционные отверстия перекрываются и вентиляция помещений осуществляется посредством механической системы. В холодную погоду воздушный промежуток двойного фасада образует статичную воздушную прослойку, обладающую хорошими теплоизоляционными свойствами.

Рисунок. (подробнее)

 

 

    Схема конструкции северного фасада здания:

1 – наружная оболочка двойного фасада; 2 – внутренняя оболочка двойного фасада; 3 – щелевое отверстие для притока воздуха в помещение; 4 – щелевое отверстие для удаления воздуха из помещения; 5 – штора-жалюзи; 6 – охлаждающий потолок; 7 – устройства открывания окон

    Механическая приточно-вытяжная вентиляция здания мэрии организована по схеме вытесняющей вентиляции (displacement ventilation). Приточный воздух подается в вертикальный вентиляционный канал, расположенный в центральной части здания, откуда на каждом этаже распределяется по помещениям по горизонтальным воздуховодам, расположенным в пространстве под фальшполом. Воздухораздача осуществляется через воздухораспределительные решетки в полу. Удаление воздуха осуществляется из верхней зоны помещения. Воздух собирается в горизонтальные воздуховоды, расположенные выше подвесного потолка, а затем попадает в вертикальный сборный вентиляционный канал, расположенный, как и вертикальный канал приточного воздуха, в центре здания.

    Организация воздухообмена по схеме вытесняющей вентиляции позволяет обеспечить более высокое качество воздуха в обслуживаемых помещениях и снизить затраты энергии по сравнению с более традиционной схемой перемешивающей вентиляции. Подробнее о системе вытесняющей вентиляции см. [5].

Рисунок. 

 

 

    Схема конструкции южного фасада здания:

1 – наружная оболочка двойного фасада; 2 – внутренняя оболочка двойного фасада; 3 – щелевое отверстие для притока воздуха в помещение; 4 – щелевое отверстие для удаления воздуха из помещения; 5 – штора-жалюзи; 6 – конвектор

    Для охлаждения воздуха в офисных помещениях мэрии в летнее время используются охлаждающие потолки. Холодная вода циркулирует по пустотелым балкам в конструкциях потолка. Металлические части потолка охлаждаются и охлаждают воздух, который поступает в нижнюю часть помещения под действием гравитационных сил. Теплый воздух от находящихся в помещении людей, компьютеров, принтеров, осветительных приборов и другого оборудования поднимается вверх, где остывает и вновь очень медленно опускается, не вызывая при этом сквозняков. Таким образом обеспечивается практически одинаковая температура воздуха по всей высоте помещения. В качестве источника холодоснабжения используются грунтовые воды с относительно низкой температурой, составляющей 12–14 °C. Для получения грунтовой воды используются две скважины глубиной 125 м, пробуренные до водоносного горизонта непосредственно под зданием мэрии. Использование этого природного ресурса взамен воды, охлажденной в чиллерах, снижает потребление электрической энергии.

    Преимуществом такой схемы является повышенный тепловой комфорт в обслуживаемом помещении – отсутствие сквозняков, низкая скорость воздушных потоков в помещении, равномерность температуры воздуха по высоте помещения. Кроме этого, такие системы отличаются бесшумностью, низкими эксплуатационными затратами, компактностью. Подробнее о системах потолочного охлаждения см. статью «Охлаждение излучающими панелями», опубликованную в этом номере журнала.

    После завершения цикла циркуляции по охлаждающим потолкам грунтовые воды собираются в сборном резервуаре, откуда затем сбрасываются непосредственно в Темзу. Часть этой воды используются для смыва в туалетах здания и для полива растений, что позволяет снизить потребление водопроводной воды.

    Кроме непосредственного охлаждения помещений при циркуляции холодной воды в охлаждающих потолках, низкотемпературные грунтовые воды используются в охлаждающих змеевиках центральной механической системы вентиляции для центрального охлаждения приточного воздуха. Традиционные чиллеры, располагаемые на крыше здания, исказили бы его архитектурный облик.

    В зимнее время тепло удаляемого вентиляционного воздуха, включая тепло бытовых теплопоступлений (главным образом, тепловыделений от компьютеров, офисной техники и осветительных приборов), а также его влагосодержание может быть использовано для подогрева и увлажнения приточного воздуха. Для этого воздух, удаляемый из помещений здания мэрии, собирается в вертикальном сборном вентиляционном канале, расположенном в центре здания, и пропускается через гигроскопические роторные рекуператоры, подогревая и увлажняя приточный воздух.

    Роторные рекуператоры имеют самую высокую эффективность теплоутилизации (до 80 %), однако основным их недостатком является возможность взаимного перетекания воздушных потоков, что делает их непригодными в тех помещениях, где требуется полное разделение приточного и удаляемого воздуха. Увлажнение приточного воздуха может привести к его дополнительному загрязнению, т. к. пары влаги воздуха создают благоприятную среду для различных микробов и органических загрязнений.

    В летнее время охлажденный удаляемый воздух используется для предварительного охлаждения приточного воздуха. Комбинация устройств утилизации тепла (холода), использование грунтовых вод в качестве источника холодоснабжения, а также выбор формы, ориентации здания и солнцезащитных устройств позволили отказаться от каких-либо традиционных холодильных установок.

Рисунок.

 

 

    Схема механической вентиляции, отопления и охлаждения помещений:

1 – подача воздуха системой механической вентиляции через воздухораспределительные устройства в полу;

2 – удаление воздуха из верхней зоны помещения;

3 – конвектор системы отопления;

4 – система охлаждающих потолков

    В здании мэрии используется комбинированное отопление – система воздушного отопления, совмещенная с вентиляцией, и система водяного отопления. В системе водяного отопления в качестве отопительных приборов используются конвекторы, установленные в зале заседаний и в офисах, а также напольное панельно-лучистое отопление в фойе. В офисных помещениях конвекторы установлены по внешнему периметру и располагаются в пространстве под фальшполом, что предотвращает выпадение конденсата на относительно холодных светопрозрачных наружных ограждающих конструкциях, предупреждает образование сквозняков и освобождает пространство в помещениях.

    Горячая вода также используется для подогрева приточного воздуха в центральной приточной установке. Для приготовления горячей воды используются два газовых бойлера. Для снижения расхода энергии, затрачиваемой на циркуляцию теплоносителя, использованы насосы с регулируемой скоростью вращения, которые позволяют увеличить или уменьшить расход теплоносителя в зависимости от времени года, времени суток, занятости помещений и т. д.

    По расчетам проектировщиков, удельные годовые затраты энергии на климатизацию нового здания мэрии составят 112 кВт•ч/м2 в год.

Рисунок.

 

 

    Схема холодоснабжения здания с использованием низкотемпературных грунтовых вод:

1 – cкважина глубиной 125 м;

2 – охлаждающий змеевик приточной установки;

3 – теплообменник;

4 – охлаждающий потолок;

5 – сборный резервуар;

6 – р. Темза

    Система автоматизации и управления зданием

    Для поддержания и контроля требуемых параметров микроклимата в помещениях здания мэрии была разработана система автоматизации и управления зданием (Building Management System, BMS). Эта система запрограммирована на эффективное использование установленного инженерного оборудования и сбережение энергии при требуемом качестве микроклимата. Например, охлаждение воздуха в зале заседаний и в залах собраний осуществляется только в том случае, когда обслуживаемые помещения используются. Контролируется уровень воздухообмена и температура приточного воздуха, что позволяет обеспечить требуемый микроклимат в обслуживаемых помещениях.

    Литература

    1. М. М. Бродач. Теплоэнергетическая оптимизация ориентации и размеров здания // Науч. тр. НИИСФ: Тепловой режим и долговечность зданий. М., 1987.

    2. Ю. А. Табунщиков, М. М. Бродач. Математическое моделирование и оптимизация тепловой эффективности зданий. М.: АВОК-ПРЕСС, 2002.

    3. Ю. А. Табунщиков. Основы математического моделирования теплового режима здания как единой энергетической системы: Дис. д-ра техн. наук. М.: НИИСФ, 1983.

    4. Ю. А. Табунщиков, Д. Ю. Хромец, Ю. А. Матросов. Тепловая защита ограждающих конструкций зданий и сооружений. М.: Стройиздат, 1986.

    5. Вытесняющая вентиляция в непроизводственных зданиях: Справочное руководство REHVA. М.: АВОК-ПРЕСС, 2003.

    6. Ю. А. Табунщиков, М. М. Бродач, Н. В. Шилкин. Энергоэффективные здания. М.: АВОК-ПРЕСС, 2003.

    7. City Hall in London: Schief gewickelt // IntelligenteArchitektur. 2003. № 3–4.

Источник: www.abok.ru

Электротехника


 

поддержка сайта светотехнического общества

Сайт светотехнического общества работает с 2007 года. Основная цель проекта - привлечение специалистов к обмену опытом посредством общедоступного светотехнического форума ЭкспертЮнион. Самые активные светотехники приглашаются в "КЛУБ" - закрытый светотехничесий клуб профессионалов, целью которого является взаимовыгодный обмен знаниями и информацией коммерческого направления.